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1 Lecture 13: Dual Formulation of Support Vector Machines
1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Part 1: Lagrange Duality
In this lecture, we continue looking at Support Vector Machines (SVMs), and define a new formu-
lation of the max-margin problem.

Before we do that, we start with a general concept—Lagrange duality.

3 Review: Components of A Supervised Machine Learning Prob-
lem

At a high level, a supervised machine learning problem has the following structure:

Training Dataset︸ ︷︷ ︸
Attributes + Features

+ Learning Algorithm︸ ︷︷ ︸
Model Class + Objective + Optimizer

→ Predictive Model

4 Review: Maximizing the Margin
We saw that maximizing the margin of a linear model amounts to solving the following optimization
problem.

min
θ,θ0

1

2
||θ||2

subject to y(i)((x(i))⊤θ + θ0) ≥ 1 for all i

We are going to look at a different way of optimizing this objective. But first, we start by defining
Lagrange duality.
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5 Constrained Optimization Problems
We will look at constrained optimization problems of the form

min
θ∈Rd

J(θ)

such that ck(θ) ≤ 0 for k = 1, 2, . . . ,K

where J(θ) is the optimization objective and each ck(θ) : Rd → R is a constraint.

Our goal is to find a small value of J(θ) such that the ck(θ) are negative.

6 Optimization with Penalties
Another way of approaching the above goal is via:

min
θ

L(θ, λ) = J(θ) +

K∑
k=1

λkck(θ)

for some positive vector of Lagrange multipliers λ ∈ [0,∞)K . We call L(θ, λ) the Lagrangian.

• If λk ≥ 0, then we penalize large values of ck
• For large enough λk, no ck will be positive—a valid solution.

Penalties are another way of enforcing constraints.

7 Penalties vs. Constraints
Penalites and constraints are closely related. Consider our constrained optimization problem:

min
θ∈Rd

J(θ)

such that ck(θ) ≤ 0 for k = 1, 2, . . . ,K

We define its primal Lagrange form to be

min
θ∈Rd

P(θ) = min
θ∈Rd

max
λ≥0

L(θ, λ) = min
θ∈Rd

max
λ≥0

(
J(θ) +

K∑
k=1

λkck(θ)

)

These two forms have the same optimum θ∗!

Why is this true? Consider again

min
θ∈Rd

P(θ) = min
θ∈Rd

max
λ≥0

L(θ, λ) = min
θ∈Rd

max
λ≥0

(
J(θ) +

K∑
k=1

λkck(θ)

)

• If a ck is violated (ck > 0) then maxλ≥0 L(θ, λ) is ∞ as λk → ∞.

• If no ck is violated and ck < 0 then the optimal λk = 0 (any bigger value makes the inner
objective smaller).

2



– If ck < 0 for all k then λk = 0 for all k and

min
θ∈Rd

P(θ) = min
θ∈Rd

max
λ≥0

L(θ, λ) = min
θ∈Rd

J(θ)

Thus, minθ∈Rd P(θ) is the solution to our original optimization problem.

8 Langrange Dual
Now consider the following problem over λ ≥ 0:

max
λ≥0

D(λ) = max
λ≥0

min
θ∈Rd

L(θ, λ) = max
λ≥0

min
θ∈Rd

(
J(θ) +

K∑
k=1

λkck(θ)

)
.

We call this the Lagrange dual of the primal optimization problem minθ∈Rd P(θ). We can always
construct a dual for the primal.

9 Lagrange Duality
The dual is interesting because we always have:

max
λ≥0

D(λ) = max
λ≥0

min
θ∈Rd

L(θ, λ) ≤ min
θ∈Rd

max
λ≥0

L(θ, λ) = min
θ∈Rd

P(θ)

Moreover, in many cases, we have

max
λ≥0

D(λ) = min
θ∈Rd

P(θ).

Thus, the primal and the dual are equivalent!

10 Related Topic: Constrained Regularization
Consider regularized supervised laerning problem with a penalty term:

min
θ∈Θ

L(θ) + γ ·R(θ).

We may also enforce an explicit constraint on the complexity of the model:

min
θ∈Θ

L(θ)

such that R(θ) ≤ γ′

We will not prove this, but solving this problem is equivalent so solving the penalized problem for
some γ > 0 that’s different from γ′.

In other words, we can regularize by explicitly enforcing R(θ) to be less than a value or we can
penalize R(θ).

We are now going to see an application of Lagrangians in the context of SVMs.

# Part 2: Dual Formulation of SVMs

Let’s now apply Lagrange duality to support vector machines.
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11 Review: Binary Classification
Consider a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We distinguish between two types of supervised learning problems depnding on the targets y(i).

1. Regression: The target variable y ∈ Y is continuous: Y ⊆ R.
2. Binary Classification: The target variable y is discrete and takes on one of K = 2 possible

values.

In this lecture, we assume Y = {−1,+1}.

12 Review: Linear Model Family
In this lecture, we will work with linear models of the form:

fθ(x) = θ0 + θ1 · x1 + θ2 · x2 + ...+ θd · xd

where x ∈ Rd is a vector of features and y ∈ {−1, 1} is the target. The θj are the parameters of
the model.

We can represent the model in a vectorized form

fθ(x) = θ⊤x+ θ0.

13 Review: Geometric Margin
We define the geometric margin γ(i) with respect to a training example (x(i), y(i)) as

γ(i) = y(i)

(
θ⊤x(i) + θ0

||θ||

)
.

This also corresponds to the distance from x(i) to the hyperplane.

14 Review: Maximizing the Margin
We saw that maximizing the margin of a linear model amounts to solving the following optimization
problem.

min
θ,θ0

1

2
||θ||2

subject to y(i)((x(i))⊤θ + θ0) ≥ 1 for all i

We are going to look at a different way of optimizing this objective. But first, we start by defining
Lagrange duality.
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15 Review: Penalties vs. Constraints
Penalites and constraints are closely related. Consider our constrained optimization problem:

min
θ∈Rd

J(θ)

such that ck(θ) ≤ 0 for k = 1, 2, . . . ,K

We define its primal Lagrange form to be

min
θ∈Rd

P(θ) = min
θ∈Rd

max
λ≥0

L(θ, λ) = min
θ∈Rd

max
λ≥0

(
J(θ) +

K∑
k=1

λkck(θ)

)

These two forms have the same optimum θ∗!

16 The Lagrangian of the SVM Problem
Consider the following objective, the Langrangian of the max-margin optimization problem.

L(θ, θ0, λ) =
1

2
||θ||2 +

n∑
i=1

λi

(
1− y(i)((x(i))⊤θ + θ0)

)

We have put each constraint inside the objective function and added a penalty λi to it.

17 Review: Langrange Dual
Consider the following problem over λ ≥ 0:

max
λ≥0

D(λ) = max
λ≥0

min
θ∈Rd

L(θ, λ) = max
λ≥0

min
θ∈Rd

(
J(θ) +

K∑
k=1

λkck(θ)

)
.

We call this the Lagrange dual of the primal optimization problem minθ∈Rd P(θ). We can always
construct a dual for the primal.

18 The Dual of the SVM Problem
Consider optimizing the above Lagrangian over θ, θ0 for any value of λ.

min
θ,θ0

L(θ, θ0, λ) = min
θ,θ0

(
1

2
||θ||2 +

n∑
i=1

λi

(
1− y(i)((x(i))⊤θ + θ0)

))

This objective is quadratic in θ; hence it has a single minimum in θ.
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We can find it by setting the derivative to zero and solving for θ, θ0:

θ =

n∑
i=1

λiy
(i)x(i)

0 =

n∑
i=1

λiy
(i)

Substituting this into the Langrangian we obtain:

L(λ) = max
θ,θ0

L(θ, θ0, λ) =
n∑

i=1

λi −
1

2

n∑
i=1

n∑
k=1

λiλky
(i)y(k)(x(i))⊤x(k)

as well as 0 =
∑n

i=1 λiy
(i) and λi ≥ 0 for all i.

Substituting this into the Langrangian we obtain the following expression for the dual
maxλ≥0D(λ) = maxλ≥0minθ,θ0 L(θ, θ0, λ):

max
λ

n∑
i=1

λi −
1

2

n∑
i=1

n∑
k=1

λiλky
(i)y(k)(x(i))⊤x(k)

subject to
n∑

i=1

λiy
(i) = 0

λi ≥ 0 for all i

19 Lagrange Duality in SVMs
Recall that in general, we have:

max
λ≥0

D(λ) = max
λ≥0

min
θ∈Rd

L(θ, λ) ≤ min
θ∈Rd

max
λ≥0

L(θ, λ) = min
θ∈Rd

P(θ)

In the case of the SVM problem, one can show that

max
λ≥0

D(λ) = min
θ∈Rd

P(θ).

Thus, the primal and the dual are equivalent!

20 Properties of the Dual
We can make several observations about the dual

max
λ

n∑
i=1

λi −
1

2

n∑
i=1

n∑
k=1

λiλky
(i)y(k)(x(i))⊤x(k)

subject to
n∑

i=1

λiy
(i) = 0 and λi ≥ 0 for all i

• This is a constrainted quadratic optimization problem.
• The number of variables λi equals n, the number of data points.
• Objective only depends on products (x(i))⊤x(j) (more on this soon!)
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21 When to Solve the Dual
When should we be solving the dual vs. the primal? * The dimensionality of the primal depends on
the number of features. If we have a few features and many datapoints, we should use the primal.
* Conversely, if we have a lot of features, but fewer datapoints, we want to use the dual.

In the next lecture, we will see how we can use this property to solve machine learning problems
with a very large number of features (even possibly infinite!).

# Part 3: Practical Considerations for SVM Duals

We continue our discussion of the dual formulation of the SVM with additional practical details
about the dual formulation is defined an used.

22 Review: Binary Classification
Consider a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We distinguish between two types of supervised learning problems depnding on the targets y(i).

1. Regression: The target variable y ∈ Y is continuous: Y ⊆ R.
2. Binary Classification: The target variable y is discrete and takes on one of K = 2 possible

values.

In this lecture, we assume Y = {−1,+1}.

23 Review: Primal and Dual Formulations
Recall that the the max-margin hyperplane can be formualted as the solution to the following
primal optimization problem.

min
θ,θ0

1

2
||θ||2

subject to y(i)((x(i))⊤θ + θ0) ≥ 1 for all i

The solution to this problem also happens to be given by the following dual problem:

max
λ

n∑
i=1

λi −
1

2

n∑
i=1

n∑
k=1

λiλky
(i)y(k)(x(i))⊤x(k)

subject to
n∑

i=1

λiy
(i) = 0

λi ≥ 0 for all i

24 Review: Non-Separable Problems
Our dual problem assumes that a linear hyperplane exists. However, what if the classes are non-
separable? Then our optimization problem does not have a solution and we need to modify it.
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Our solution is going to be to make each constraint “soft”, by introducing “slack” variables, which
allow the constraint to be violated.

y(i)((x(i))⊤θ + θ0) ≥ 1− ξi.

In the optimization problem, we assign a penalty C to these slack variables to obtain:

min
θ,θ0,ξ

1

2
||θ||2 + C

n∑
i=1

ξi

subject to y(i)((x(i))⊤θ + θ0) ≥ 1− ξi for all i
ξi ≥ 0

This is the primal problem. Let’s now form its dual.

25 Non-Separable Dual
We can also formulate the dual to this problem. First, the Lagrangian L(λ, µ, θ, θ0) equals

1

2
||θ||2 + C

n∑
i=1

ξi −
n∑

i=1

λi

(
y(i)((x(i))⊤θ + θ0)− 1

)
−

n∑
i=1

µiξi.

The dual objective of this problem will equal

D(λ, µ) = min
θ,θ0

L(λ, µ, θ, θ0).

As earlier, we can solve for the optimal θ, θ0 in closed form and plug back the resulting values into
the objective.

We can then show that the dual takes the following form:

max
λ

n∑
i=1

λi −
1

2

n∑
i=1

n∑
k=1

λiλky
(i)y(k)(x(i))⊤x(k)

subject to
n∑

i=1

λiy
(i) = 0

C ≥ λi ≥ 0 for all i

26 Coordinate Descent
Coordinate descent is a general way to optimize functions f(x) of multiple variables x ∈ Rd:

1. Choose a dimension j ∈ {1, 2, . . . , d}.
2. Optimize f(x1, x2, . . . , xj , . . . , xd) over xj while keeping the other variables fixed.

Here, we visualize coordinate descent applied to a 2D quadratic function.

The red line shows the trajectory of coordinate descent. Each “step” in the trajectory is an iteration
of the algorithm. Image from Wikipedia.
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27 Sequential Minimal Optimization
We can apply a form of coordinate descent to solve the dual:

max
λ

n∑
i=1

λi −
1

2

n∑
i=1

n∑
k=1

λiλky
(i)y(k)(x(i))⊤x(k)

subject to
n∑

i=1

λiy
(i) = 0 and C ≥ λi ≥ 0 for all i

A popular, efficient algorithm is Sequential Minimal Optimization (SMO): * Take a pair λi, λj ,
possibly using heuristics to guide choice of i, j. * Reoptimize over λi, λj while keeping the other
variables fixed. * Repeat the above until convergence.

28 Obtaining a Primal Solution from the Dual
Next, assuming we can solve the dual, how do we find a separating hyperplane θ, θ0?

Recall that we already found an expression for the optimal θ∗ (in the separable case) as a function
of λ:

θ∗ =
n∑

i=1

λiy
(i)x(i).

Once we know θ∗ it easy to check that the solution to θ0 is given by

θ∗0 = −
maxi:y(i)=−1(θ

∗)⊤x(i) +mini:y(i)=−1(θ
∗)⊤x(i)

2
.

29 Support Vectors
A powerful property of the SVM dual is that at the optimum, most variables λi are zero! Thus, θ
is a sum of a small number of points:

θ∗ =
n∑

i=1

λiy
(i)x(i).

The points for which λi > 0 are precisely the points that lie on the margin (are closest to the
hyperplane).

These are called support vectors.

30 Notation and The Iris Dataset
To demonstrate how to use the dual version of the SVM, we are going to again use the Iris flower
dataset.

We will look at the binary classificaiton version of this dataset.
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[2]: import numpy as np
import pandas as pd
from sklearn import datasets

# Load the Iris dataset
iris = datasets.load_iris(as_frame=True)
iris_X, iris_y = iris.data, iris.target

# subsample to a third of the data points
iris_X = iris_X.loc[::4]
iris_y = iris_y.loc[::4]

# create a binary classification dataset with labels +/- 1
iris_y2 = iris_y.copy()
iris_y2[iris_y2==2] = 1
iris_y2[iris_y2==0] = -1

# print part of the dataset
pd.concat([iris_X, iris_y2], axis=1).head()

[2]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
0 5.1 3.5 1.4 0.2
4 5.0 3.6 1.4 0.2
8 4.4 2.9 1.4 0.2
12 4.8 3.0 1.4 0.1
16 5.4 3.9 1.3 0.4

target
0 -1
4 -1
8 -1
12 -1
16 -1

Let’s visualize this dataset.

[3]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.
↪→html

%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]
import warnings
warnings.filterwarnings("ignore")

# create 2d version of dataset and subsample it
X = iris_X.to_numpy()[:,:2]
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
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y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))

# Plot also the training points
p1 = plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=60, cmap=plt.cm.Paired)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Not Setosa'],␣
↪→loc='lower right')

[3]: <matplotlib.legend.Legend at 0x120be94e0>

We can run the dual version of the SVM by importing an implementation from sklearn:

[5]: #https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.
↪→html

from sklearn import svm

# fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel='linear', C=1000) # this optimizes the dual
# clf = svm.LinearSVC() # this optimizes for the primal
clf.fit(X, iris_y2)

plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=30, cmap=plt.cm.Paired)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

# plot decision boundary and margins
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,

linestyles=['--', '-', '--'])
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,

linewidth=1, facecolors='none', edgecolors='k')
plt.xlim([4.6, 6])
plt.ylim([2.25, 4])
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plt.show()

31 Algorithm: Support Vector Machine Classification (Dual
Form)

• Type: Supervised learning (binary classification)
• Model family: Linear decision boundaries.
• Objective function: Dual of SVM optimization problem.
• Optimizer: Sequential minimial optimization.
• Probabilistic interpretation: No simple interpretation!
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